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Abstract

A mixed three-dimensional variational model has been derived for stress analysis of a representative volume element
of woven fabric composites, based on the Reissner variational principle. In this model, each yarn is modeled as a
homogeneous orthotropic (in its own material axes) medium, and the matrix regions that exist around the wavy yarns
are also represented as separate regions in the model. In order to accurately predict the characteristic damage (crack
initiation and its propagation), the equilibrium of stresses is satisfied pointwise everywhere in the model, and the yarn-
interface stress compatibility is enforced in the model. The variational principle yields a set of second-order partial
differential equations, which can numerically be solved by either by finite element or finite difference approaches. A
solution procedure with representative results is given in an adjoining paper. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The woven fabric (textile) composite is widely used in advanced composite manufacturing and key to
many affordable composite parts of complex shapes. The performance of such structures is ultimately
influenced by the deformation characteristics and failure mechanism of woven composites. Further, to
achieve the optimum structural properties of these parts, there is a need to develop a basic understanding of
deformation/damage mechanics and failure mechanisms of textile composites. The in situ experimental
observation of damage initiation in woven composites reveals that the damage initiates in the form of
interface cracks in the vicinity of yarn crimping, Roy (1996, 1998), which is strongly influenced by the
interlaminar stresses at a location of significant strain gradients, Fig. 1. At the yarn crimping location, fiber
tows (or yarns) are intertwined with each other in perpendicular direction (Fig. 2). Due to the perpendicular

*Corresponding author. Tel.: +1-937-255-9034; fax: +1-937-656-4706.
E-mail address: ajit.roy@wpafb.af.mil (A.K. Roy).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00404-2



5936 A.K. Roy, S. Sihn | International Journal of Solids and Structures 38 (2001) 5935-5947

T300/938. 8HS. [0]2s#1, 50Ks| i

Fig. 1. A representative cross-sectional micrograph of an 8HS woven T300/938 (graphite/epoxy) composite at 70% of the failure load.

X

Fig. 2. The RVE of a 2D woven composite.

yarn crimping, even under the application of simple unidirectional load, the stresses in the vicinity of the
yarn crimping are three-dimensional, Whitcomb (1991). Thus an accurate prediction of the interlaminar
stresses at the interface region is needed to reliably analyze damage initiation and propagation in woven
composites. Most of the research work in this area, however, is based on two-dimensional stress analysis,
Naik and Ganesh (1994), Karayaka and Kurath (1994), which does not reliably predict the interlaminar
stresses. Further, traditional finite-element analysis only predicts stresses accurate at the Gaussian inte-
gration points (interior to the element boundary), and stresses are derived from the displacement field at the
element level. Thus, traditional displacement-based finite element analysis is not expected to yield interface
stress continuity in the vicinity of yarn crimping location, as observed by Marrey and Sankar (1995).
The analytical model developed in this work is based on the Reissner mixed variational principle,
Reissner (1950), where the variations of both stresses and displacement are performed to obtain reliable
interface stress continuity. Pagano (1978) applied Reissner variational principle analyzing stress field in flat
composite, and recently Harrison and Johnson (1996) applied the same principle analyzing stress field in
tapered laminates. The Pagano’s composite laminate problem contained flat (no curvature) interface, and
Harrison and Johnson dealt with material interface containing one-dimensional curvature. In the present
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Fig. 3. RVE of the analytical model.

model, however, due to the weaving architecture, the representative volume element (RVE) contains two-
dimensionally curved material interfaces intersecting at the yarn intertwining location (Fig. 2). In this
model, as was utilized by Pagano (1978), and Harrison and Johnson (1996), the continuity of both tractions
and displacements is imposed at the yarn (material) interface. Further, the equilibrium of stresses is satisfied
pointwise and the variational principle yields energy both in stresses and displacements; an accurate pre-
diction of stress field is thus expected with this model. The RVE of the model is divided into several
subregions; a characteristic fabric yarn or matrix region (Fig. 3) occupies each subregion. The mathematical
derivation of the governing equations and the interface continuity conditions of the subregions (yarns) of
the RVE are derived in this paper. The governing and interface continuity conditions are a set of partial
differential equations. The solution for this set of partial differential equations can be numerically obtained
either by a finite element or a finite difference scheme. The numerical solution and validation of the
mathematical formulation is presented in Part II, an adjoining paper.

2. Model geometry

The RVE of woven composite contains all the characteristic yarns and the matrix region to represent a
repeating unit cell of the weaving pattern, and the geometry of the RVE changes with the weaving pattern
(such as plain weave (PW), SHS, 8HS, etc.). The RVE of a few of these weaving patterns is schematically
shown in Chou and Ko (1989). In order to obtain a good accuracy in the stress field, the RVE is subdivided
in several subregions representing the characteristic yarns and the matrix regions. In PW architecture
the adjacent yarns are alternately cross-crimping with its perpendicular yarns. Thus PW does not contain
adjacent yarns of self-similar weaving patterns. Other weaving architectures, such as SHS and 8HS, contain
adjacent self-similar weaving yarns. Fig. 2 shows two such yarns of self-similar pattern both in x and y
directions, next to the intertwined cross-crimped yarns. The cross-sectional micrograph of woven com-
posites (as can be seen in Fig. 1 of an 8HS composite) reveals that the self-similar weaving yarns are packed
together during the fabrication process. Thus, in view of keeping the size of the computational problem to a
reasonable level, it is viewed acceptable that the yarns of self-similar weaving (crimping) pattern be lumped
in one subregion, as illustrated in Fig. 3. In Fig. 3, subregions 2 and 4 represent the self-similar yarns
aligned along y (fill) and x (warp) directions, respectively. Thus, in the absence of any damage (cracks), the
RVE contains six subregions, see Fig. 3. Among the six subregions in Fig. 3, two are associated with yarns
aligned in warp direction (subregions 1 and 4), two subregions (subregions 2 and 3) are for fill yarns, and
subregions 5 and 6 are associated with lower and upper matrix regions near the crimp location, respectively.
As we introduce cracks in the RVE, to study fracture toughness and energy release rates, etc., the number
of subregions in the RVE will increase accordingly. The geometry of each subregion is defined by two of its
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boundary surfaces; lower boundary (%) and upper boundary (/). Due to yarn waviness and nonrectan-
gular cross-section of the yarns, /; and /4, are functions of both x and y. The in situ observation of crimped
composites revealed that the crimp angle practically remained unchanged during loading (Roy, 1996, 1998).
Thus geometric nonlinearity is not included in this study.

Since each subregion is configured to contain a characteristic yarn or matrix region, the materials in
subregions containing yarns are modeled as transversely isotropic (or isotropic for matrix regions) ho-
mogeneous materials with the major material symmetry axis aligned parallel to yarn fiber axis. Due to yarn
crimping, the material properties of the subregions containing yarns, when transformed to RVE coordinate
system (x, y,z) possess monoclinic material symmetry. It is generally known that the material nonlinearity
(especially the shear component) influences the stress field on off-axis composites (presence of off-axis is due
to yarn crimping). However, in view of the crimp (off-axis) angle in woven composites being very small (in
the order of 4-5° or 0.07-0.09 rad), the material nonlinearity is not considered in this study.

3. Variational formulation of the model

Besides analyzing the stress field of undamaged woven composite system, a long-term objective is to use
this model to study fracture toughness (energy release rates, etc.) of woven composites. Thus, for an ac-
curate prediction of energy release rates, etc., continuity conditions (stresses and displacements) at the
interface need to be satisfied as accurately as possible. In the vicinity of a cracked interface (location of high
strain gradient), the stress continuity condition is difficult to be satisfied with traditional displacement based
finite element method. Thus, the present model is derived from the Reissner variational principle (a mixed
variational principle), where the variation of the stresses is taken independent of that of the displacement
field. The governing equations of elasticity in terms of the Cartesian coordinates, (x,y,z), can be obtained
from the following variational equation developed by Reissner (1950)

8 =0 (1)
where
J:/FdV—/ T, dl (2)
v I,
and
F = %aij(u,;j + ujﬁi) — W(O'i,ei) (3)

In these equations, W is the strain energy density expressed in terms of the stresses o;;; V' is the volume; I’
the entire surface; 7; the prescribed tractions; u; the displacement components; and I'; is the portion of the
boundary on which one or more traction components are prescribed. It is understood that both stresses and
displacements are subjected to variation in the application of Eq. (1), and summation over the range of
repeated subscripts (but not superscripts) is implied throughout the work.

As described above, each subregion containing yarns is modeled as homogeneous medium with
monoclinic material symmetry with respect to the RVE coordinate. In order to derive the governing
equations from Egs. (1)—(3), we need to first define stress field for each subregion. Contracted notation is
employed in the representation of the stress and strain components, i.e.,

01 = 0y, 02 =0y, 03=0; 04=0y, O05=0x, O0¢=O0y (4)

and analogous relation for the engineering strain components, ¢; (i = 1,...,6).

The average yarn waviness ratio (ratio of the waviness amplitude to the length of the wave) of a typical
12K tow 8HS woven fabric composites due to yarn crimping is about 0.05 (Roy, 1996). With an average
yarn thickness of 0.125 mm in such fabric, the value of the radius of curvature to thickness ratio (R/?)
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around the crimped location results in to be about 25. For such a value of R/¢ ratio, the weaving curvature
effect on the through-the-thickness stress distribution within a yarn is assumed negligible. Further, the ratio
of the in-plane dimension of the RVE to yarn thickness varies typically around 15 (for PW) to 60 (for 8HS),
which implies that the yarn (subregion) can be considered thin compared to the in-plane dimension of the
RVE. Thus it is reasonable to assume that the in plane stresses, within a subregion (yarn), to vary linearly
through the thickness. Then, the expression for the out-of-plane stresses are obtained by satisfying the
equations of equilibrium to ensure the equilibrium of stresses pointwise. The expressions of the stress
components are as follows

o =pufy (i=1-6, K =1-4) (5)

where p;x are functions of x and y and f,gi) are functions of z only. The functions f,g) (K = 1,2) associated
with the in-plane stresses, as discussed above, are linear functions of z, and f,@ (K = 3,4) associated with
the interlaminar stresses, derived by satisfying the linear elasticity equations of equilibrium and are higher
order polynomials. The expressions for f,?) are as follows

hy —z
fl(l) :fl(z) :f1(3) :f1(4) :f1(5) :fl(é) _ " (6)
hy — hy
. z—h
Y= = ) = 0 = 9 = 10 = o
hy — hy
2
3) ) s) 2z —z(hy + hy) + hyhy
= = = 8
A =19 =1 h ®)
3) 2Z3 — 322(21 +22) +Z(h% + 4h1h2 + /’l%) — h]hz(h] + hz)
f;l = 3 (9)
(hy — hy)
with
=0 (i=1,2,6andK =3,4;i=4,5and K = 4) (10)

The expressions of the stresses are substituted in Egs. (2) and (3) to derive the governing equations. The
strain energy density, W in Eq. (3), of a subregion (an elastic body of monoclinic material symmetry),
including the influence of free expansion, is given by

W:%S,-jal-oj—‘raie,- (11)

where S;; is the elements of the compliance matrix of monoclinic material symmetry, and e; is the strain due
to free expansion.

In order to reduce the size of the numerical problem, after substituting the expression of stresses in Eq.
(2), the integration with respect to thickness (z) is performed. The integration with respect to z also gives
rise to weighted average displacements and the displacements on the surfaces z = A, h,. The definitions of
the weighted displacements are (¢ may represent either u, v, or w)

G0 7), 4" (), 4r,3)] = / Hy o, Hilg(x,y,2) dz (12)

where

/’lz—Z Z—h] 22—2(h1 +h2) —hlhz

H=——7, h = , H; =
(hy — i)’ (hy — hy)? (hy — i)’
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Further, because of the dependence of the subregion surface boundaries (4, and /,) on x and y, Leibnitz’s

theorem in the following form must be applied in Eq. (2) on terms involving derivatives in x and y.

hy(x,p) o d o (x,p) 6h1
x,y,z)dz = — G(x,y,z)dz — —G(x,y,h) + —G(x,y, h 13
[ gt g (5.3,2) d = 52 Glxpoh) + 52 Gl ) (13)

where ¢ represents either x or y, and G is a general function of x, y, and z.

After substituting Egs. (3)—(12) into Eq. (2), and using Eq. (13) where appropriate we obtain

// Z (y + 7)Y — (R + Bu™ + B+ Fv' + Fsv + Fgw' +F7w)(")}dxdy

XV k=

s>

0

® ®Y,( (k)
Psz - h2xp12 hz,ypsz )”2

0 (k 0k k
[ + (hg,)ngl) + h(lg)/pél) _pgl))ul
00\ Lk 0k 0k O\ (k & 0k B0, (k
+ (p 2xp62 - hg,y)sz))”(z) + (hgﬁipél) + hi,y)Pgl) _P§1)>U(1 )+ (P,gz) - hg,)ngz) - héy)l’:(t;)W(z)
+(nl

k k
h xP51 + hlyp4l pgl))w(l )}dxdy

p>
- k k 0\ "
- / Z{ |:p11 +p12 +p61 +P62 +P51 +P52 W +P§3)W(k)} (h(z) - hg ))} dy
¥

=
/ [(szuz + Tty + ‘fzzwz) - (fxlul + 101 + ‘lewl)}df (14)

»
- 0 s o 0 - 0 - k k
{ [Pél)”(k) +Péz)u “ "‘Pél)v(k) "’sz)“ ® +P§1)W(k) +p§2>w ® +P£3)W<k)} (h(z) - h<1 ))} dx

where p;; and y;; are defined in Appendix A. The superscript k in the above equation represents a subregion.
However, superscript £ and / appeared later equation (17) represent the lower and upper subregions, re-
spectively, sharing a common interface. The subscript °,” represents the partial derivative of a variable with
respect to x or y. The variables containing subscripts 1 and 2 in the above e uatlon are associated with the
lower and upper surface of a subregion, respectively. For example, u1 ) and u2 represent the u displacement
at lower and upper surface of subregion k, respectively.

There are 29N unknown variables (N being the total number of subregions) in Eq. (14) to be determined.
All terms in Eq. (14) are not independent. Now we need to impose the interface (traction and displacement)
continuity condition of the subregions to determine the independent terms that are necessary to determine
29N unknown variables. The interface tractions are obtained by defining the unit vectors (7, §, /1) associated
with the interface surface, where 7 is the normal vector and 7 and § two surface vectors (see Fig. 4). For

Fig. 4. The configuration of the normal (1) and tangential (¢,s) vectors on an interface.
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convenience, the surface vector 7 is defined being in the plane containing i and &, and § being in the plane
containing j j and k. The interface surface unit vectors (7, , 7) expressed with respect to the unit vectors (i, /,
and k) associated with the RVE coordinate system (x, y,z) as follows.

a dp apg f
j (15)

= |42 dxp a3 J
a3 ayp  as k

Sy W~

where a;; are the direction cosines. The direction cosines a;; are also used for transforming stresses between
the two coordinate systems, (7,8, 7) and (i, /, k). The direction cosines a;; ; obtained in terms of surface slopes
are given in Table 1. The interface displacement continuity condition between two adjacent subregions, /

(upper subregion) and k (lower subregion) is a trivial one (u(ll) = ugk), vgl) = v(zk), w(ll) = w2 ) The interface

traction continuity condition (6, 5l = aik), &g” = 0(5”, &gl) = 2 ), after transforming the surface tractions to
(i,],k) or (x,y,z) coordinate system, becomes
(1) (k) h(k> 2 h(k) 2 2h<k> h(k> () (k)
30 S Rl D K
Py =Py (— 0 h(zk) hgk)z Py — P (16)
0 _ ®) ®) ‘ o (0 _ &
D5t — Ps hy) 0 hy Ps1 — Ps2

After applying the above interface displacement and traction continuity conditions in Eq. (14) and taking
its first variation we obtain

8 = / / Z 733 51733 + /34 61734 + /C43 61743 + /Css 8Pss } dxdy

Y k=

- // Z (Fidit + Fydu* + F380 + Fydv" + F5dw + Fodw' +F76fv)<">}dxdy
XY k=1

[
N-1
L
+ (Xéll + xé@)?ipé'f + (/(12 + h2x1{52 (h ) 132 ) 81712 <A(2§) + hz) 742 (h( > /22)>8P(k)
(

k K (k K (k k), (k) (k k k 6 (k ) _(k k(1
+ Xéz) + h;;)&(tz) + h(z,)):/'(gz) + 2112,3%}%52))51722) + (sz) - h(zlpgz) - h(z.y)Péz) + h;,,ng 1)

I k ! ! k I / k I / k I ! X !
(X(u) + X(IZ))SPEI) + (X;l) + ng))SPgl) + (Xgl) + ng))Spgl) + (Xfu) + Xi;)apz(u) + (}{(51> + ng)>5pgl)
)

(k) (1) ()Y, (k) (k) (k) (k) (k) ()Y, (k)
+ hyyPer _P51)“2 + (P42 — Py — hz P2 +h2xp61 "‘hz}l’z P41)

+ (Pg? — Wy lps — hpls + HpS) + k] P31)>W§k)}dXdy

[(711 u /51 + (hgnl)) XQT))SPW) + (721 +h1y K41 (hg'r;) 731 )5 %
+ ( + hi?xi"{) + hﬁf"y)xﬁ-'? + 2h m)hlnif /C31 )5P (1(12 hg’r/sz (h( ) /32)51712
+ (722 + hz}hz (h ) /{32 > 8Pzz (Xg;) + h(z'lzxfé) + hg”:,{(s';)

+ 200 A ,(32)5p(")}dxdy+5Jp:0 (17)

where, if displacements are prescribed at the boundary
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Table 1
Direction cosines of the interface surface vectors
i j k
A . Iy
t ay = = ap =0 ap = =
(k) 1+ ()
~ hy
S ay =0 an = L ayp = .
2 2
1+(hy) 1+ (hy)
P — axai3 — a11423 — aj1a
n a3y = — — az = — asz =
1—aj3ax; V1-aizaxs vV 1-aizax

e = [ [ (20 4 a7 )opld 4 (1 + Ky ) opid + (18 + 5ol
xy

(/51 +H A + )5P§ (741 + 0 + 6 )5195{{1) - (X(srf) +0)" )SP }dxdy
(18)
and, if tractions are prescribed at the boundary
8 = // {(cos o, cos B,p) — sina, cos f,p\y — cosa,sin f,pl) — ti;))?Su(z")
xy
+ (coso,cos B p) — si n _ 1B ™) 5
, Pay — SINa, o8 B,pgy’ — cosa, sinfl,pyy — 1, |,
+ (cosozn cosﬁnpg2 — sina, cosﬁnp52 — cosay, smﬁnp42 — rzz )BW
(cosocm cosﬁmp51 — sina, cosﬁmp11 — COS0, smﬁmp61 - r )8u1
(cosoz,,,cosﬂmp“1 - smoc,,,cosﬁ,np()1 — COSy, smﬁmp21 —r )81)1
(cosocm cos,/)’mp31 — sina, cosﬁmp51 — COSOl, s1nﬁmp41 - rzl )6w1 }dxdy (19)

The subscripts or superscripts m and n are associated with the bottom and top surfaces of the RVE re-
spectively. The angles, o and f, are the slope of the surface of the subregion with respect to x and y-axes
respectively.

After imposing the variational condition obtained in Eq. (18) to all independent variables (p;;, etc.) we
obtain the following governing equations representing the equilibrium, compatibility, and boundary con-
ditions for the RVE.

(a) Equilibrium equations, for k =1,2,..., N (7N equations)

FH=FY =W —FY =FY =FY =FY =0 fork=1,2,...,N (20)
(b) Subregion compatibility equations, for k = 1,2,...,N: (4N equations),
/_5;3 _724 —74(13 —753 =0 (21)
where

k k K sk (k
s = — By = Sjupis

A0

alk 2 k) ) A
S = [, SU0Aa: 22)

1

(¢) Interface compatibility equations, for k =1,2,...,N — 1: (12N—12 equations),
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Consider a perfectly bonded interface between the kth and /th subregions (yarns). Here the /th subregion is
considered on top of the kth subregion (i.e., /th subregion is at a higher z-value than that of the kth
subregion).

W9 =0 fori=12,....6 (23)
m+mw+wﬁw:o &8
28 WA+ (1)) 4 =0 (25)
léz +h2]2/&<é +h2y752 +2h2xhzy732 =0 (26)
Psz hz \rp12 h(zlf;l’éz P51 +thP11 +h2yp6l =0 (27)
P42 hz vpsz h(zl,{y)sz P41 "‘hle’m +h yp21 =0 (28)
Pl M~ D — M A =0 29

(d) Boundary conditions (12 equations)

1. Top surface of the RVE (six equations)

2
18+ A+ (H) 28 =0 (30)
2
28+ K0 + () = 0 an
1+ h by + 2R = 0 (32)
B ) =0 )
or
cosa, cos f,pt — sino, cosB,pls — cosa, sin f,pl) = 7% (33b)
1+ s + 5 =0 (34a)
or
cosa, cos B,piy — sina,cos f,ply — cosa, sin f,p0 = %;';> (34b)
5w =0 (35a)
or

cosa, cos f,pt — sina, cos B,ply — cosa, sin f,pl) = 7% (35b)
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2. Bottom surface of the RVE (six equations)

2
Ao+ () =0 )
2
Xél) + h<1,y)Xz(u) + (h(lrz)> ng) =0 (37)
4+ D + KA+ R o &
g5 I " =0 (39a)
or
oS, cos f,p5") — sina, cos f,p\") — cosa,sin f,pin) = 77 (39b)
A~ =0 (o0
or
oS, cos B, — sina, cos f,pi") — cosa,sin f,pl) = %ﬁ'{’ ) (40b)
A =" =0 (412)
or
cos,, cos f,p\") — sina, cos f,p" — coso,sin f,pi") = 71 (41b)

The subscripts or superscripts m and n are associated with the bottom and top surfaces of the RVE, re-
spectively. o and f§ are the angles of the slope of the subregion surface along the x and y directions, re-
spectively. There are 29 unknown variables for each subregion (yarn or matrix region) in the model. For an
N number of subregions, Eqgs. (20)—(41a) and (41b) yield a set of 23N governing (or characteristic) equa-
tions. The other remaining 6N equations are the interface displacement continuity conditions
(u(ll) = u(zk), e ,wgl) = wgk)). There are possible two approaches (finite element or finite difference) may be
taken to solve the above system of equations. A solution procedure for this system of equations is given in a
following paper, Part-11 (Sihn and Roy, 2000). The three-dimensional stress field of the RVE of the woven
composites can then be calculated after solving the above system of equations.

Appendix A
Notations used in Eq. (14)
k k 0 &k (k
8 =) ) Sl

where

e ®

h
a(k 2 k) () i k 2 %) i
S = [ sirnfa B = [0
1 1

and S;; is the compliance matrix.



A.K. Roy, S. Sihn | International Journal of Solids and Structures 38 (2001) 5935-5947 5945

(k) (k)
) = (h<k> _ h<k)> ou' + 6(;;2 — 2 ) 70 _ 6h;k).u*(k)
1 2 ! Ox Ox Ox

. ® _ p® ¥
7 = (W _ h<k>> ou® + a(th h ) w1 _6}’(1 ). ®
12 2 ! Ox Ox Ox

dy oy dy
X ) _ <k>) ®
s = () — ") N o2 o 4 P
oy dy oy

oy dy oy
. ® _ & .
g% = g _ 0 (h(k) _ h“‘)) aw® a(2h2 h ) W 4 o
42 2 1 6)/ ay ay

k) _ k) _ k) (h(k) _ h<k>) )
gy =0 v A (1 1 3y o + o 3
_ K _ ) .
’1( ) _ G i ) i (h(k) B h<k>) ow®) 6(h2 2}11 ) - 6h§> "
! 2 Ox Ox ox
(k) (k)
Ow*(k) 6(2h2 —h ) on®
* k k * —
n®) = —a® —r® 4 (hy — Al >) ——+ = wb) = (®)
A ® _ 5® ] ’
) =i — w4 ()~ ) L (-t I SR s
3 2 ! Ox Ox Ox Ox
_ ® _ oy k) ® _ np®)
W _ (h("> ~ h“‘)) oa® oo™ a(h2 2h, ) a0 4 a(h2 2h, ) w  on oY
o1 2 ! dy Ox Ox dy Ox dy
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®) ® o m w0 w on
Hyp = =W, Hp =Wy Hy :le U0 Hp = _ng + 0
o on
3 k k) k k) k
LR . S
k k k k
a0 = ony! +ah§ " O ony! w  ohy g
61 ay 1 ax 1 62 ay 2 ax 2
ol opt) on" onlh)
k) k) k) P D k (k (k)
FY = (h; —h ) <—6)1c1 +—6)6/1 + (P() Plz) o + ( ) P62 ) —ay —p5] +P52 —Ps3
d (k) d (k) ah(k) ah(k)
k k k D D k k k k
A = (nf = ))( > T )t (bl =Pl ) =+ (p) 1Y) o =P+ + P
@p(k) ap(k) ah(k) ah(k)
k k k k k k k k k k
Fs( = (hy - h(l )) ( ;l + _;1 + (Pél) _Péz)) aplc_+ (Pél) _sz)) 6)1/_ _pz(u> +Pz(12) _PA(B)
d (k) ap(k) ah(k) ah(k)
k k k k k k k k k k
i (o) (S ) o ) S ()t
d (k) d (k) h(k) oh k)
(k) k) _ (k) P P. (k) (k) _ (k) (k) (k) (k)
F& = (hz hy )( ;1 + ;1 + (P51 Ps; +p53> 6; + (P41 —Di Jr1’743) 6)1/ — D3 TPy
_P33) +P34
ap(k) ap(k) ah(k) ah(k)
k k k k k k k k
Fé( = (hy - h(l )> ( ;2 6;2 + (Pél) *sz Psz) ox (P41 Pz(u) *Pz(B)) 6)2/_ *Pgl) ergz)
+ P + Pl
X ) k k X)
R0 _ <h<k> ) k) oply) . o\ _ 2p¥ ony) _om ) 2p¥ ony o, +6pl
2 ! Ox dy B\ o Ox B\ oy dy 34
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